Correct Answer - Option 3 : 758
Given:
x + y + z = 22
xy + yz + xz = 35
Formula used:
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz
Calculation:
x + y + z = 22
xy + yz + xz = 35
According to the question,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz
⇒ (22)2 = x2 + y2 + z2 + 2(35)
⇒ x2 + y2 + z2 = 484 - 70
⇒ x2 + y2 + z2 = 414
Now,
(x - y)2 + (y - z)2 + (z - x)2 = 2(x2 + y2 + z2 - xy - yz - xz)
⇒ 2(x2 + y2 + z2 - xy - yz - xz) = 2[x2 + y2 + z2 - (xy + yz + xz)]
⇒ 2(414 - 35)
⇒ 2 × 379 = 758
∴ The value of (x - y)2 + (y - z)2 + (z - x)2 is 758.