Correct Answer - Option 1 : 3000
Concept:
If the two discrete signals are having the length ‘n’ and ‘m’ respectively then the resultant output signal has the length as n + m – 1
The convolution of signals in one domain is equivalent to the multiplication of signals in another domain.
Calculation:
Given y[n] = x[n] *h[n]
Operator * denotes the convolution of two signals.
The length of the output signal is y[n] = 3 + 5 – 1 = 7
Y(ejω) = F(ejω)H(ejω)
\(\mathop \sum \limits_{n = 0}^6 y\left[ n \right]{e^{ - j\omega n}} = \mathop \sum \limits_{n = 0}^2 f\left[ n \right]{e^{ - j\omega n}}\mathop \sum \limits_{n = 0}^4 h\left[ n \right]{e^{ - j\omega n}}\)
At ω = 0
\(\mathop \sum \limits_{n = 0}^6 y\left[ n \right] = \mathop \sum \limits_{n = 0}^2 f\left[ n \right]\mathop \sum \limits_{n = 0}^4 h\left[ n \right]\)
\(max\mathop \sum \limits_{n = 0}^6 y\left[ n \right] = \left( {max\mathop \sum \limits_{n = 0}^2 f\left[ n \right]} \right)\left( {max\mathop \sum \limits_{n = 0}^4 h\left[ n \right]} \right)\)
\(max\mathop \sum \limits_{n = 0}^6 y\left[ n \right] = \left( {3 \times 10} \right)\left( {5 \times 20} \right)\)
\(max\mathop \sum \limits_{n = 0}^6 y\left[ n \right] = 3000\)