Correct Answer - Option 3 : 7
Given:
(81√3x3 + 625√5y3) = (Ax + By) (Cx2 + Dy2 + Exy)
Formula used:
x3 + y3 = (x + y)(x2 + y2 - xy)
Calculation:
(81√3x3 + 625√5y3) = (Ax + By) (Cx2 + Dy2 + Exy)
⇒ (3√3x)3 + (5√5y)3 = (Ax + By) (Cx2 + Dy2 + Exy)
⇒ (3√3x + 5√5y) [(3√3x)2 + (5√5y)2 - (3√3x × 5√5y)] = (Ax + By) (Cx2 + Dy2 + Exy)
⇒ (3√3x + 5√5y) (27x2 + 125y2 - 15√15xy) = (Ax + By) (Cx2 + Dy2 + Exy)
On comparing both sides, we get
A = 3√3, B = 5√5, C = 27, D = 125 and E = -15√15
According to the question, we have to find the value of ABE
A × B × E = 3√3 × 5√5 × (-15 √15)
⇒ A × B × E = -(225 × 15)
⇒ A × B × E = -3375
Now, we can see that the ten's place digit of (A × B × E) = 7
∴ The ten's place digit of (A × B × E) is 7.