Correct Answer - Option 2 : 5
Given:
5x + ky = 3
kx + 5y = 3
Concept used:
a1x + b1y = c1
a2x + b2y = c2
(a1/a2) = (b1/b2) = (c1/c2)
Calculation:
a1 = 5, b1 = k, c1 = 3
a2 = k, b2 = 5, c2 = 3
⇒ a1/a2 = b1/b2 = c1/c2
⇒ 5/k = k/5
⇒ k2 = 25 = k = √25
⇒ k = 5
⇒ c1/c2 = 3/3 = 1
Now,
(a1/a2) = (b1/b2) = (c1/c2) = 1
∴ The value of k is 5
Here k will not be ± 5
If we take k = ± 5, then it will be
a1/a2 = b1/b2 = -1
But, c1/c2 = 3/3 = 1
Which does not satisfy the required condition.
So, k ≠ ± 5