Correct Answer - Option 3 :
\(F(s)= \frac{1}{s+b}\)
Concept:
The Laplace transform of a general exponential signal is given by:
\(L[e^{-bt}]\longleftrightarrow \frac{1}{s+b}\)
where 'a' is any positive integer.
Some important Laplace transforms:
|
f(t)
|
f(s)
|
ROC
|
1.
|
δ(t)
|
1
|
Entire s-plane
|
2.
|
e-at u(t)
|
\(\frac{1}{{s + a}}\)
|
s > - a
|
3.
|
e-at u(-t)
|
\(\frac{1}{{s + a}}\)
|
s < - a
|
4.
|
cos ω0 t u(t)
|
\(\frac{s}{{{s^2} + \omega _0^2}}\)
|
s > 0
|
5.
|
te-at u(t)
|
\(\frac{1}{{{{\left( {s + a} \right)}^2}}}\)
|
s > - a
|
6.
|
sin ω0t u(t)
|
\(\frac{{{\omega _0}}}{{{s^2} + \omega _0^2}}\)
|
s > 0
|
7.
|
u(t)
|
1/s
|
s > 0
|