Correct Answer - Option 4 : 12.37
Concept:
The velocity potential function, stream function, and velocity components are related as shown below
\(U = \; - \frac{{\partial ϕ }}{{\partial x}} = \; - \frac{{\partial ψ }}{{\partial y}}\;\; ...\left( 1 \right)\)
\(V = \; - \frac{{\partial ϕ }}{{\partial y}} = \;\frac{{\partial ψ }}{{\partial x}}\;\;\; ...\left( 2 \right)\)
where ϕ - velocity potential function, ψ - stream function.
Calculation:
Given:
Stream function is ψ = 3x2 – y3
Now the velocity components will be
\(U = \; - \frac{{\partial ψ }}{{\partial y}} = -(-3y^2) =3y^2\)
\(V = \; \frac{{\partial ψ }}{{\partial x}} = 6x\)
At P(2,1),
→ U = 3 × (1)2 m/s ⇒ U = 3 m/s
→ V = 6 × (2) m/s = 12 m/s
Now the magnitude of velocity at point P (2, 1) will be
\(= \sqrt {(3)^2 + (12)^2} = 12.37 \)
∴ Magnitude of velocity components at the point (2, 1) is 12.37 m/s