Correct Answer - Option 4 :
\(\displaystyle\int_a^b f(x) dx = - \displaystyle\int_a^b f(t) dt\)
Concept:
Property of definite integral:
1) If f(x) is an odd function then,
\(\int\limits_{ - a}^a {f(x)dx} = 0\)
2) If f(x) is an even function then,
\(\int\limits_{ - a}^a {f(x)dx} =2\int\limits_0^a {f(x)dx}\)
3) \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
4) \(\rm \int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx\)
5) If f(x) = f(2a - x), then, \(\rm \int_0^{2a}f(x)\ dx=2\int_0^af(x)\ dx\)