Correct Answer - Option 4 : Null matrix.
Concept:
For an invertible matrix A:
- A-1 = \(\rm \frac{adj(A)}{|A|}\).
- |A-1| = |A|-1 = \(\rm \frac{1}{|A|}\).
Calculation:
From the definition of the inverse of a matrix, \({{\rm{A}}^{ - 1}} = \frac{{{\rm{adj}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}}\).
Multiplying both sides by A, we get:
A(A-1) = \(\rm \frac{A[adj(A)]}{|A|}\)
⇒ |A| I = A[adj(A)]
But it is given that A is a singular matrix, i.e. |A| = 0.
∴ A[adj(A)] = 0, or A[adj(A)] is a null matrix.