LIVE Course for free

Rated by 1 million+ students
Get app now
0 votes
12 views
in Calculus by (30.0k points)
closed by
Evaluate: \(\rm \int_{0}^{\pi/2}\cos 2x\ dx\)

1 Answer

0 votes
by (53.7k points)
selected by
 
Best answer
Correct Answer - Option 1 : 0

Concept:

Definite Integral:

If ∫ f(x) dx = g(x) + C, then \(\rm \int_a^b f(x)\ dx = [ g(x)]_a^b\) = g(b) - g(a).

Calculation:

Let I = \(\rm \int_{0}^{\pi/2}\cos 2x\ dx\)

⇒ I = \(\rm \left[\frac{\sin 2x}{2}\right]_0^{\pi/2}\)

⇒ I = \(\rm \left[\frac{\sin \pi}{2}-\frac{\sin 0}{2}\right]\)

⇒ I = 0.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...