Correct Answer - Option 2 : M + k
Concept:
For the observations \(\rm x_1 ,x_2 ,x_3 ,..........,x_n\)
Mean (\(\rm\overline x\)) = \(\rm {x_1 +x_2 + x_3 +..........+x_n\over n}\)
Calculation:
Given mean of the n observation is M
M = \(\rm x_1 - k +x_2 - k+ x_3 - k +..........+x_n-k\over n\)
M = \(\rm (x_1 +x_2 + x_3 +..........+x_n)-nk\over n\)
M = \(\rm {x_1 +x_2 + x_3 +..........+x_n\over n}-{nk\over n}\)
M = \(\rm {x_1 +x_2 + x_3 +..........+x_n\over n}\) - k
M + k = \(\rm {x_1 +x_2 + x_3 +..........+x_n\over n}\)
∴ The required mean of x1, x2, x3, _ _ _, xn = M + k