Correct Answer - Option 3 : (a
2 - 1)/(a
2 + 1)
Given:
secθ + tanθ = a
Concept used:
secθ = 1/cosθ
cosθ = Base/Hypotenuse
tanθ = sinθ/cosθ
sinθ = Perpendicular/Hypotenuse
tan2θ + 1 = sec2θ
sec2θ – tan2θ = 1
(secθ + tanθ)(secθ – tanθ) = 1
secθ – tanθ = 1/(sec θ + tan θ))
Calculation:
secθ + tanθ = a ----(I)
⇒ sec θ - tan θ = 1/a ----(II)
Adding (I) and (II);
2sec θ = a + (1/a)
⇒ 2/cos θ = (a2 + 1)/a
⇒ 1/cosθ = (a2 + 1)/2a
⇒ cosθ = 2a/(a2 + 1)
Putting this value in a right angled triangle;
cosθ = Base/Hypotenuse
Using Pythagoras theorem;
(H)2 = (B)2 + (P)2 ,
⇒ (a2 + 1)2 = (2a)2 + (P)2 ,
⇒ (P)2 = (a2 + 1)2 - (2a)2
⇒ (P)2 = a4 + 1 + 2a2 - 4a2
⇒ (P)2 = a4 + 1 - 2a2
⇒ (P)2 = (a2 - 1)2
⇒ P = (a2 - 1)
sinθ = Perpendicular/Hypotenuse
⇒ (a2 - 1)/(a2 + 1)
∴ The value of sinθ is (a2 - 1)/(a2 + 1)