Correct Answer - Option 2 : 91
Concept:
(1 + x)n = nC0 + nC1 x + nC2 x2 +...+ nCn xn
nC1 = n
nCn = 1
Calculation:
Here, (1 + x)13 = a0 + a1x + . . . . . + a13 x13 ....(1)
\(\rm (1+x)^{13}=1+^{13}C_1(x)+^{13}C_2(x^2)+....+^{13}C_{13}(x^{13})\) ....(2)
From (1) and (2), we get
\(\rm a_0=1, a_1=^{13}C_1, a_2=^{13}C_2,.......,a_{13}=^{13}C_{13}\)
Now,
\(\rm \sum _{r=1}^{13}r\frac{a_r}{a_{r-1}}=(1\times \frac{a_1}{a_0})+(2\times \frac{a_2}{a_1})+......+(13\times \frac{a_{13}}{a_{12}})\)
\(\rm =(1\times \frac{13C_1}{1})+(2\times \frac{13C_2}{13C_1})+......+(13\times \frac{13C_{13}}{13C_{12}})\)
\(\rm =(13)+(2\times \frac{13\times 12}{2\times13})+......+(13\times \frac{1}{13})\)
= 13 + 12 + 11 + .......+ 1
= 91
Hence, option (2) is correct.