Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
91 views
in Binomial Theorem by (114k points)
closed by
If (1 + x)13 = a0 + a1x + . . . . .  + a13 x13 then, find the value of \(\rm \sum _{r=1}^{13}r\frac{a_r}{a_{r-1}}\)
1. 104
2. 91
3. 169
4. 182

1 Answer

0 votes
by (113k points)
selected by
 
Best answer
Correct Answer - Option 2 : 91

Concept:

(1 + x)=  nC0 + nC1 x + nC2 x2 +...+ nCn xn

nC1 = n

nCn = 1

 

Calculation:

Here, (1 + x)13 = a0 + a1x + . . . . .  + a13 x13                         ....(1)

\(\rm (1+x)^{13}=1+^{13}C_1(x)+^{13}C_2(x^2)+....+^{13}C_{13}(x^{13})\)         ....(2)

From (1) and (2), we get

\(\rm a_0=1, a_1=^{13}C_1, a_2=^{13}C_2,.......,a_{13}=^{13}C_{13}\)

Now,

 \(\rm \sum _{r=1}^{13}r\frac{a_r}{a_{r-1}}=(1\times \frac{a_1}{a_0})+(2\times \frac{a_2}{a_1})+......+(13\times \frac{a_{13}}{a_{12}})\)

\(\rm =(1\times \frac{13C_1}{1})+(2\times \frac{13C_2}{13C_1})+......+(13\times \frac{13C_{13}}{13C_{12}})\)

\(\rm =(13)+(2\times \frac{13\times 12}{2\times13})+......+(13\times \frac{1}{13})\)

= 13 + 12 + 11 + .......+ 1

= 91

Hence, option (2) is correct.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...