Correct Answer - Option 2 : 9
Concept:
The general term in the binomial expansion of (a + b)n is given by: \({T_{r + 1}} = {\;^n}{C_r} \times {a^{n - r}} \times {b^r}\)
Calculation:
Given:
The first three terms are respectively 1, 12x and 64x2.
2st term in expansion of (1+ ax)n = \(^n{C_1} \times {\left( 1 \right)^{n - 1}} \times {\left( {ax} \right)^1}\)
⇒ \(^n{C_1} \times {\left( 1 \right)^{n - 1}} \times {\left( {ax} \right)^1} = n \times a \times x = 12\;x\)
⇒ n × a = 12
⇒ a = 12/n
3rd term in expansion of (1+ ax)n = \(^n{C_2} \times {\left( 1 \right)^{n - 2}} \times {\left( {ax} \right)^2}\)
⇒ \(^n{C_2} \times {\left( 1 \right)^{n - 2}} \times {\left( {ax} \right)^2} = \frac{{n \times \left( {n - 1} \right)}}{2} \times {a^2} \times {x^2} = 64\;{x^2}\)
\(\Rightarrow \;\frac{{n \times \left( {n - 1} \right)}}{2} \times {a^2} = 64\) .....(1)
By substituting the value of a in equation (1), we get
\( \Rightarrow \;\frac{{n \times \left( {n - 1} \right)}}{2} \times \frac{{144}}{{{n^2}}} = 64\)
⇒ 8n = 72
⇒ n = 9
∴ The value of n is 9.