Correct Answer - Option 4 : -x
3
Concept :
A= \(\rm \begin{vmatrix} a_{11} &a_{12} &a_{13} \\ a_{21}& a_{22} &a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}\)
Then determinant of matrix A , | A | = = a11 × {(a22 × a33) – (a23 × a32)} - a12 × {(a21 × a33) – (a23 × a31)} + a13 × {(a21 × a32) – (a22 × a31)} .
Calculation:
⇒ Δ = \(\rm\begin{vmatrix} x & \cosθ &\sinθ \\ -\cosθ & -x & 1\\ \sinθ & 1 & x \end{vmatrix}\)
⇒ Δ = \(\rm x(-x^{2}-1)- cosθ (-xcosθ -sinθ) + sinθ (-cosθ+ x sinθ)\)
⇒ Δ = \(\rm -x^{3}-x + xcos^{2}θ+ sinθ .cosθ -sinθ .cosθ +xsin^{2}θ\)
⇒ Δ = \(\rm -x^{3}-x+ x (sin^{2}θ +cos^{2}θ )\)
⇒ Δ = - x3 [∵ sin2 θ + cos2 θ = 1]
The correct option is 4.