Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
245 views
in Determinants by (113k points)
closed by
Find the determinant of \(\rm\begin{vmatrix} x & \cos\theta &\sin\theta \\ -\cos\theta & -x & 1\\ \sin\theta & 1 & x \end{vmatrix}\) . 
1. 1
2. xsin2θ 
3. x2
4. -x3

1 Answer

0 votes
by (115k points)
selected by
 
Best answer
Correct Answer - Option 4 : -x3

Concept :

A= \(\rm \begin{vmatrix} a_{11} &a_{12} &a_{13} \\ a_{21}& a_{22} &a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}\) 

Then determinant of matrix A , | A | = = a11 × {(a22 × a33) – (a23 × a32)} - a12 × {(a21 × a33) – (a23 × a31)} + a13 × {(a21 × a32) – (a22 × a31)} . 

Calculation:

⇒ Δ = \(\rm\begin{vmatrix} x & \cosθ &\sinθ \\ -\cosθ & -x & 1\\ \sinθ & 1 & x \end{vmatrix}\) 

⇒ Δ = \(\rm x(-x^{2}-1)- cosθ (-xcosθ -sinθ) + sinθ (-cosθ+ x sinθ)\) 

⇒ Δ = \(\rm -x^{3}-x + xcos^{2}θ+ sinθ .cosθ -sinθ .cosθ +xsin^{2}θ\) 

⇒ Δ = \(\rm -x^{3}-x+ x (sin^{2}θ +cos^{2}θ )\)               

 Δ = - x3                                        [∵ sin2 θ + cos2 θ = 1]

The correct option is 4.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...