Correct Answer - Option 2 : 200
Given:
First case: Sohan got marks = 30% of the total marks
But he failed by 50 marks
Second case: Mohan got marks = 45% of the total marks
Then he will get 25 marks more than passing marks.
Concept used:
If a candidate got x marks and failed by y marks, then passing marks = x + y
If a candidate got x marks and got y marks more than passing marks, then passing marks = x - y
Calculation:
Let the total marks be x.
Passing marks in the first case = [(30/100) × x] + 50
⇒ 0.3x + 50 ----(i)
And Passing marks in the second case = [(45/100) × x] - 25
⇒ 0.45x - 25 ----(ii)
From equation (i) and (ii), we get,
0.45x - 25 = 0.3x + 50
⇒ 0.45x - 0.3x = 50 + 25
⇒ 0.15x = 75
⇒ x = 75/0.15
⇒ x = 500 marks
Passing marks = 0.3x + 50
⇒ 0.3 × 500 + 50
⇒ 150 + 50
⇒ 200
∴ The passing marks is 200.