Correct Answer - Option 1 : 236 cm
2
Given:
Sum of all edges of a cuboid is 76 cm.
Diagonal of a cuboid is 5√5 cm.
Formula Used:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
Total Surface Area of a Cuboid = 2(lb + bh + hl)
Diagonal of a cuboid = √(l2 + b2 + h2)
Calculation:
Diagonal of a cuboid is 5√5 cm.
D =√(l2 + b2 + h2)
⇒ (5√5)2 = l2 + b2 + h2
⇒ l2 + b2 + h2 = 125 ----(I)
Sum of all edges of a cuboid is 76 cm.
⇒ 4(l +b + h) = 76 cm
⇒ (l + b + h) = 19 cm
Squaring on both sides,
⇒ (l + b + h)2 = 192
⇒ l2 + b2 + h2 + 2(lb + bh + hl) = 361
⇒ 2(lb + bh + hl) = 361 – ( l2 + b2 + h2)
⇒ 2(lb + bh + hl) = 361 – 125
⇒ 2(lb + bh + hl) = 236
∴ Total surface area of cuboid is 236 cm2.