Correct Answer - Option 4 : -4.5
Concept:
The slope of the tangent to a curve y = f(x) is m = \(\rm dy\over dx\)
The slope of the normal = \(\rm -{1\over m}\) = \(\rm -{1\over {dy\over dx}}\)
Calculation:
Given curve y2 - 3x3 + 2 = 0
Differentiating the equation wrt x we get
⇒ 2y\(\rm dy\over dx\) - 9x2 + 0 = 0
⇒ 2y \(\rm dy\over dx\) = 9x2
Slope at (1, -1)
⇒ 2(-1) \(\rm dy\over dx\) = 9 (1)
⇒ -2\(\rm dy\over dx\) = 9
⇒ \(\rm dy\over dx\) = -4.5
The slope of the tangent (m) = \(\rm {dy\over dx}\)
∴ m = -4.5