Correct Answer - Option 3 : p2 = a2 cos2 α + b2 sin
Concept:
If a line y = mx + c ------ (1)
Touches the ellipse
\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) then c2 = a2m2 + b2 -------(2)
Calculation:
Given – line xcos α + ysin α = 0 -------(A)
And ellipse \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) from equation (A) y sinα = - xcos α + b
\(y = - x\frac{{\cos \alpha }}{{\sin \alpha }} + \frac{b}{{\sin \alpha }}\)
On comparing with (1),
\(m = - \frac{{\cos \alpha }}{{\sin \alpha }}\) and \(c = \frac{b}{{\sin \alpha }}\)
Then from equation (2)
c2 = a2m2 + b2
\(\frac{{{b^2}}}{{{{\sin }^2}\alpha }} = {a^2}\left( {\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}} \right) + {b^2}\)
b2 = a2cos2 α + b2 sin2 α