Correct Answer - Option 2 :
\(\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}\)
Concept:
Equation of any normal is \(ax - sec θ - by\ cosec θ = a^2 - b^2\) ...(i)
Calculation:
Equation of line, lx + my = n is normal to the ellipse ... (ii)
⇒ my = -lx + n
\(⇒ y = -\dfrac{l}{m} x + \dfrac{n}{m}\)
Here Slope m = - l/m and c = n/m
Equation of ellipse,
\(\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2}=1\)
So, Equation (i) and (ii) represents the same line:
⇒ a secθ/b cosecθ × m = (a2 - b2)/-n
⇒ cosθ = -an/l(a2 - b2)
And, sinθ = bn/m(a2 - b2)
∵ cos2θ + sin2θ = 1
∴ [-an/l(a2 - b2)]2 + [bn/m(a2 - b2)]2 = 1
\(⇒\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}\)
This is the required condition