Correct Answer - Option 1 : k/4
Concept:
The stiffness of Spring is given as
\(k = \frac{W}{\delta } = \frac{{G{d^4}}}{{8W{D^3}n}}\)
where d= diameter of spring wire, D = Mean diameter of the spring or coil diameter, G = Shear modulus, n = number of coils, W = Load
If all the parameters remain constant except n, and D
Then,
\(k\propto \frac 1{D^3 n}\)
Calculation:
Given:
n1 = N and n2 = N/2, k1 = k, D1 = D and D2 = 2D,
\(k\propto \frac 1{D^3 n}\)
\(\frac {k_2}{k_1}=\frac {D_1^3n_1}{D_2^3n_2}\)
\(\frac {k_2}{k_1}=\frac {D^3N}{(2D)^3 N/2}\)
\(\frac {k_2}{k_1}=\frac {D^3N}{8D^3 N/2}\)
\(\frac {k_2}{k_1}=\frac{1}{4}\)
\(k_2=\frac{k_1}{4}=\frac{k}{4}\)