Taking L.H.S.
Cos2 \(\cfrac{\pi}6\) + cosec \(\cfrac{5\pi}6\) + 3 tan2 \(\cfrac{\pi}6\)
Putting \(\pi\) = 180\(^\circ\)

Here,
tan 30\(^\circ\) = \(\cfrac{1}{\sqrt3}\)
cot 30\(^\circ\) = \(\cfrac{1}{tan \,30^\circ}\)

For cosec 150\(^\circ\),
First, Finding sin 150\(^\circ\)
sin 150\(^\circ\) = sin (180 - 30\(^\circ\))
= sin 30\(^\circ\) = \(\cfrac{1}2\)
cosec 150\(^\circ\) = \(\cfrac{1}{sin \,150^\circ}\)
= \(\cfrac{1}{\cfrac{1}{2}}\) = 2
Putting values
= cot2 30\(^\circ\) + cosec (150\(^\circ\)) + 3tan2 30\(^\circ\)

= 3 + 2 + 3 x \(\cfrac13 \)
= 3 + 2 + 1
= 6
= R.H.S
Hence proved