Correct Answer - Option 3 : 90
Given:
10P2
Formula used:
nPr = \(\frac{{n!}}{{\left( {n - r} \right)!}}\)
n! = n × (n - 1) × (n - 2) × ... × 3 × 2 × 1
Calculation:
nPr = \(\frac{{n!}}{{\left( {n - r} \right)!}}\)
10P2 = \(\frac{{10!}}{{\left( {10 - 2} \right)!}}\)
⇒ (10 × 9 × 8!)/8!
⇒ 10 × 9
⇒ 90
∴ The value of 10P2 is 90.