Correct Answer - Option 4 :
\( \pm \frac{1}{{\sqrt 3 }}\)
Concept:
The modulus of a unit vector \(\rm \hat A\) = \(\rm |\hat A|\) = 1
Calculation:
Let \(\rm \vec A\) = \(\rm x(\widehat i + \widehat j + \widehat k)\)
\(\rm \vec A\) = \(\rm x\widehat i + x\widehat j + x\widehat k\)
Given: \(\rm x(\widehat i + \widehat j + \widehat k)\) is a unit vector
So, \(\rm |\vec A| =1\)
\(\rm \sqrt{x^2 + x^2 + x^2} = 1\)
\(\rm \sqrt{3x^2 } = 1\)
|x|\(\rm \sqrt{3} = 1\)
|x| = \(1\over\sqrt3\)
x = \(\boldsymbol{\pm{1\over\sqrt3}}\)