Correct Answer - Option 3 : -(log
10 x)
2
Concept:
Property of logarithm: \({\log _x}10 = \frac{1}{{{{\log }_{10}}x}}\)
Calculation:
Let y = log10 x and z = logx 10
Now, yz = (log10 x) × (logx 10)
⇒ yz = 1
Differentiating with respect to z, we get
\(\rm\\y\left( \frac {dz}{dz} \right) + z\left( {\frac{{dy}}{{dz}}} \right) = 0\\ y + z\left( {\frac{{dy}}{{dz}}} \right) = 0\\\frac{{dy}}{{dz}} = - \frac{y}{z}\\ = - \frac{{{{\log }_{10}}x}}{{{{\log }_x}10}}\\ = - \frac{{{{\log }_{10}}x}}{{\frac{1}{{{{\log }_{10}}x}}}}\\ = - {\left( {{{\log }_{10}}x} \right)^2}\)