Correct Answer - Option 1 :
\(\frac{{21}}{{4}} > K > 0\)
\(G\left( s \right) = \frac{k}{{s\left( {{s^2}\; + \;s\; + \;2} \right)\left( {s\; + \;3} \right)}}\)
C.E = 1 + G(s) H(s) = 0
s(s2 + s + 2) (s + 3) + K = 0
s(s3 + 3s2 + s2 + 3s + 2s + 6 + K) = 0
s4 + 3s3 + s3 + 3s2 + 2s2 + 6s + K = 0
s4 + 4s3 + 5s2 + 6s + K = 0
S4
|
1
|
5
|
K
|
S3
|
4
|
6
|
0
|
S2
|
\(\frac{{20 - 6}}{4}\)
|
\(\frac{{4K}}{4}\)
|
0
|
S1
|
\(\frac{{3.5\; \times \;6 - 4K}}{{3.5}}\)
|
0
|
|
S0
|
K
|
|
|
3.5 × 6 - 4K > 0
21 > 4K
\(K < \frac{{21}}{4}\) and K > 0