Correct Answer - Option 4 : 27√15 cm
2
Given:
The sides of a triangle are in the ratio 4 ∶ 3 ∶ 2.
Formula used:
Semi perimeter of a Δ = (a + b + c)/2
Area of Δ = √{s(s - a)(s - b)(s - c)}
Where a, b, c are sides of the Δ.
s → semiperimeter
Calculations:
Let the ratio of sides be 2x, 3x, and 4x.
Then 4x + 3x + 2x = 54
⇒ 9x = 54
⇒ x = 6
So the sides of the Δ are 24 cm, 18 cm, and 12 cm.
Semi perimeter of the Δ = (a + b + c)/2 = (24 + 18 +12)/2 = 27 cm
Area of the Δ = √{s(s - a)(s - b)(s - c)}
⇒ √{s(s - a)(s - b)(s - c)} = √{27(27 - 24)(27 - 18)(27- 12)}
⇒ √(27 × 3 × 9 × 15) = 27√15 cm2
∴ The area of the triangle is 27√15 cm2.