Correct Answer  Option 4 : Y = AB̅
Analysis:
Y = A B̅ C + A B̅ C̅
= AB̅ (C + C̅ )
= AB̅ [Since, C + C̅ = 1]
Boolean Laws

Law

Dual Pair

Remark

A + B = B + A

A.B = B.A

Commutative Law

A + (B + C) = (A + B) + C

A (BC) = (AB) C

Associative Law

A (B + C) = AB + AC

A + (BC) = (A + B) (A + C)

Distributive Law

A + 1 = 1

A.1 = A

Identity Law/Redundancy Law

A + 0 = A

A.0 = 0

A + A = A

A.A = A

A + A̅ = 1

A.A̅ = 0
