Correct Answer - Option 4 : ± 5%
Concept:
Uncertainly of combination of component:
It is a deviation of the measured value from a unique sample of data specified in terms of the degree of confidence of the user.
Let X = f (x1, x2, …….xn)
Then uncertainly is
\({w_x} = \sqrt {{{\left( {\frac{{\partial x}}{{\partial {x_1}}}} \right)}^2}wx_1^2 + {{\left( {\frac{{\partial x}}{{\partial {x_2}}}} \right)}^2}wx_2^2 + \ldots {{\left( {\frac{{\partial x}}{{\partial {x_n}}}} \right)}^2}wx_n^2} \)
Where wx1, wx2, ….wxn are uncertainly of x1, x2, xn
Calculation:
According to above concept
Let I = f(i) so \({w_I} = \frac{{\partial I}}{{\partial i}}{w_i}_1\)
Then Given, ∂I = 50 A, 2i = 10 A, \({w_i}_1 = \pm 1\% \)
So \({w_I} = \frac{{\partial I}}{{\partial i}}{w_i}_1 = \frac{{50}}{{10}} \times \left( { \pm 1\% } \right) = 5\% \)
So WI = ±5% option 4 correct choice
More information:
Equivalent limiting error of some combinations:
I. Sum of the difference between two or more Quantities.
Let X = ± x1 ± x2 ± x3
Then \(\frac{{\delta X}}{X} = \pm \left( {\frac{{{x_1}}}{X}\frac{{\delta {x_1}}}{{{X_1}}} + \frac{{{x_2}}}{X}\frac{{\delta {x_2}}}{{{X_2}}} + \frac{{{x_3}}}{X}\frac{{\delta {x_3}}}{X}} \right)\)
± δx1→ Relative increment in quality xi
± δx → Relative increment in X
\(\frac{{{\rm{\delta }}{x_i}}}{{{X_i}}}\) → Relative limiting error in quantity xi
\(\frac{{{\rm{\delta }}X}}{X}\) → Relative limiting error in X
II. Product or Quotient of two or more quantity
Let \(X = {x_1}{x_2}{x_3}\;or\;X = \frac{{{x_1}}}{{{x_2}{x_3}}}\;or\;X = \frac{1}{{{x_1}{x_2}{x_3}}}\)
\(\frac{{{\rm{\delta }}X}}{X} = \pm \left( {\frac{{{\rm{\delta }}{x_1}}}{{{x_1}}} + \frac{{{\rm{\delta }}{x_2}}}{{{x_2}}} + \frac{{{\rm{\delta }}{x_3}}}{{{x_3}}}} \right)\)
III. Composite Factor:
Let \(X = x_1^nx_2^n\)
\(\frac{{{\rm{\delta }}X}}{X} = \pm \left( {\frac{{n{\rm{\delta }}{x_1}}}{{{x_1}}} + \frac{{m{\rm{\delta }}{x_2}}}{{{x_2}}}} \right)\)