Correct Answer - Option 4 : y
2 - x
2 + 5y + c
Concept:
Let f(Z) = u(x, y) + i(v(x, y)) be an analytical function.
If the real part u(x, y) of analytic function f(z) is given then to find imaginary part v(x, y) of f(z) we can use the following procedure:
1). Find ux and uy
2). Consider \( dv= \frac{{\partial v}}{{\partial x}}dx + \frac{{\partial v}}{{\partial y}}dy\)
3). dv = vx dx + vy dy = -uy dx + ux dy.
4). \(v = \;\smallint \left( { - {u_y}} \right)dx + \;\smallint \left( {{u_x}} \right)dy + c\)
Calculation:
Given:
u = 5x + 2xy
ux = 5 + 2 × y, uy = 2 × x.
dv = vx dx + vy dy = -uy dx + ux dy = (-2 × x) dx + (5 + 2 × y) dy.
Now by integrating we get:
\(v = \;\smallint \left( { - {u_y}} \right)dx + \;\smallint \left( {{u_x}} \right)dy \)
\( v = \;\smallint \left( { - 2x} \right)dx + \;\smallint \left( {5 + 2y} \right)dy + c\)
y2 - x2 + 5y + c