Correct Answer - Option 1 :
\(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)
Concept:
Matrix transformations:
Theorem: Suppose L: Rn → Rm is a linear map. Then there exists an m×n matrix A such that L(x) = Ax for all x ∈ Rn. Columns of A are vectors L(e1), L(e2), . . . , L(en), where e1, e2, . . . , en is the standard basis for Rn.
Calculation:
Given linear transformation are:
T(e1) = 7e1 - 5e3,
T(e2) = -2e2 + 9e3,
T(e3) = e1 + e2 + e3
Let the standard matrix be A with respect to the basis e1, e2, e3,
Now T(e1) = 7e1 + 0e2 - 5e3,
T(e2) = 0e1 -2e2 + 9e3,
T(e3) = e1 + e2 + e3.
The standard matrix will be (transpose of linear combinations)
\(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)