Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.2k views
in Algebra by (240k points)
closed by
The standard ordered basis of R3 is {e1, e2, e3} Let T : R3 → R3 be the linear transformation such that T(e1) = 7e1 - 5e3, T (e2) = -2e2 + 9e3, T(e3) = e1 + e2 + e3. The standard matrix of T is:
1. \(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)
2. \(\left( {\begin{array}{*{20}{c}} 7&-2&1\\ -5&{ 9}&1\\ { 0}&0&1 \end{array}} \right)\)
3. \(\left( {\begin{array}{*{20}{c}} 7&0&-5\\ 0&{ - 2}&9\\ 1&1&1 \end{array}} \right)\)
4. \(\left( {\begin{array}{*{20}{c}} 7&-5&0\\ -2&{ 9}&1\\ { 1}&1&1 \end{array}} \right)\)

1 Answer

0 votes
by (239k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)

Concept:

Matrix transformations:

Theorem: Suppose L: Rn → Rm is a linear map. Then there exists an m×n matrix A such that L(x) = Ax for all x ∈ Rn. Columns of A are vectors L(e1), L(e2), . . . , L(en), where e1, e2, . . . , en is the standard basis for Rn.

Calculation:

Given linear transformation are:

T(e1) = 7e1 - 5e3,

T(e2) = -2e2 + 9e3,

T(e3) = e1 + e2 + e3

Let the standard matrix be A with respect to the basis e1, e2, e3

Now T(e1) = 7e1 + 0e2 - 5e3,

T(e2) = 0e1 -2e2 + 9e3,

T(e3) = e1 + e2 + e3.

The standard matrix will be (transpose of linear combinations)

\(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...