Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
61 views
in Continuity and Differentiability by (72.7k points)
closed by
\(\rm \lim_{n\to\infty} \frac{(n!)^{\frac1n}}{kn},k\ne 0\), is equal to:
1. \(\rm \frac{k}{e} \)
2. \(\rm \frac{e}{k}\)
3. \(\rm \frac{1}{ke}\)
4. None of these

1 Answer

0 votes
by (121k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(\rm \frac{1}{ke}\)

Concept:

Definite integral as the limit of a sum:

\(\rm \int_{a}^{b}{f(x)dx}=\lim_{n\to \infty }\sum\limits_{r=1}^{n}{f\left( {{x}_{r}} \right)}\Delta x \)

⇒ \(\rm \int_{a}^{b}{f(x)dx}=\lim_{n\to \infty } \sum\limits_{r=1}^{n}{f\left( a+\dfrac{(b-a)}{n}r \right)}\dfrac{(b-a)}{n}\)

 

Calculation:

Let's say that y = \(\rm \lim_{n\to\infty} \frac{(n!)^{\frac1n}}{kn},k\ne 0\).

Using the definition of factorials:

⇒ y = \(\rm \lim_{n\to \infty } {{\left\{ \frac{n}{kn}\times \frac{n-1}{kn}\times \frac{n-2}{kn}\times ...\times \frac{1}{kn} \right\}}^{\frac{1}{n}}}\)

Taking log of both sides, we get:

⇒ log y = \(\rm \lim_{n\to \infty } \frac{1}{n}\left\{ \log \left( \frac{n}{kn} \right)+\log \left( \frac{n-1}{kn} \right)+\log \left( \frac{n-2}{kn} \right)+...+\log \left( \frac{1}{kn} \right) \right\}\)

Which can also be written as:

⇒ log y = \(\rm \lim_{n\to \infty } \frac{1}{n}\left\{ \log \left( \frac{1}{k} \right)+\log \left( \frac{1}{k}-\frac{1}{kn} \right)+\log \left( \frac{1}{k}-\frac{2}{kn} \right)+...+\log \left( \frac{1}{k}-\frac{n-1}{kn} \right) \right\}\)

In summation form, this is equal to:

⇒ log y = \(\rm \lim_{n\to \infty } \sum\limits_{r=0}^{n-1}{\log \left( \frac{1}{k}-\frac{r}{kn} \right)}\frac{1}{n}\)

Let's say \(\rm \frac{1}{k}=a\).

⇒ log y = \(\rm \lim_{n\to \infty } \sum\limits_{r=0}^{n-1}{\log \left( a-\frac{ar}{n} \right)}\frac{1}{n}\)

⇒ log y = \(\rm \frac{1}{(0-a)}\lim_{n\to \infty } \sum\limits_{r=0}^{n-1}{\log \left( a+\frac{(0-a)r}{n} \right)}\frac{(0-a)}{n}\)

Using the integral as limit of sum \(\rm \int_{a}^{b}{f(x)dx}=\lim_{n\to \infty } \sum\limits_{r=1}^{n}{f\left( a+\frac{(b-a)}{n}r \right)}\frac{(b-a)}{n}\), we can write it as:

⇒ log y = \(\rm \frac{-1}{a}\int_{a}^{0}{\log (x)dx}\)

Using \(\rm \int_{a}^{b}{f(x)dx}=-\int_{b}^{a}{f(x)dx}\), we can re-write it as:

⇒ log y = \(\rm \frac{1}{a}\int_{0}^{a}{\log (x)dx}\)

Using \(\rm \int{\log xdx}=x\log x-x+C\), we get:

⇒ log y = \(\rm \frac{1}{a}\left[ x\log x-x \right]_{0}^{a}\)

⇒ log y = \(\rm \frac{1}{a}(a\log a-a)\)

⇒ log y = log a - 1

⇒ log y = log a - log e

Substituting back \(\rm \frac{1}{k}=a\), we get:

⇒ y = \(\rm \frac{1}{ke}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...