Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.5k views
in Algebra by (72.8k points)
closed by
If the vectors 2î - 3ĵ, î + ĵ - k̂ and 3î - k̂ form the three co-terminous edges of a parallelepiped, then the volume of parallelepiped is:
1. 8
2. 10
3. 4
4. 14

1 Answer

0 votes
by (121k points)
selected by
 
Best answer
Correct Answer - Option 3 : 4

Concept:

For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:

Dot Product is defined as \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).

Cross Product is defined as \(\rm \vec A\times \vec B=\vec n|\vec A||\vec B|\sin \theta\) where \(\rm \vec n\) is the unit vector perpendicular to the plane containing \(\rm \vec A\) and \(\rm \vec B\).

 

For three vectors \(\rm \vec A\)\(\rm \vec B\) and \(\rm \vec C\):

Triple Cross Product: is defined as:

 \(\rm \vec A\times(\vec B\times\vec C)=(\vec A.\vec C)\vec B-(\vec A.\vec B)\vec C\).

Triple Scalar Product (Box Product): is defined as 

\(\rm [\vec A\ \vec B\ \vec C]=\vec A.(\vec B\times\vec C)=\begin{vmatrix} \rm a_1 & \rm a_2 & \rm a_3 \\ \rm b_1 & \rm b_2 & \rm b_3 \\\rm c_1 & \rm c_2 & \rm c_3 \end{vmatrix}\).

Volume of a parallelepiped, with vectors \(\rm \vec a\)\(\rm \vec b\) and \(\rm \vec c\) as its sides, is given by the box product of the three vectors.

Volume = \(\rm [\vec a\ \vec b\ \vec c]\).

Calculation:

Let's say that the sides of the parallelepiped are:

\(\rm \vec a\) = 2î - 3ĵ + 0k̂

\(\rm \vec b\) = î + ĵ - k̂

\(\rm \vec c\) = 3î + 0ĵ - k̂

∴ Volume = \(\rm \rm [\vec a\ \vec b\ \vec c]=\begin{vmatrix} 2 & -3 & \ \ \ 0 \\ 1 & \ \ \ 1 & -1 \\ 3 & \ \ \ 0 & -1 \end{vmatrix}\) 

= 2(-1 - 0) - 3(-3 + 1) + 0(0 - 3)

= -2 + 6 + 0 = 4.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...