
Height of the pedestal = 2 m.
Let the height of the statue = h m.
Angle of elevation of top of the statue = 60°.
Angle of elevation of top of the pedestal = 45°.
Let the distance between the point of observation and foot of the pedestal = x m.
From the figure
tan 45° = \(\frac{2}{x}\)
1 = \(\frac{2}{x}\)
∴ x = 2 m.
Also tan 60° = \(\frac{2+h}{x}\)
⇒ √3 = \(\frac{2+h}{x}\)
⇒ 2√3 = 2 + h
⇒ h = 2√3 – 2
= 2(√3-1)
= 2(1.732 – 1)
= 2 × 0.732
= 1.464 m.