\(\int\)\(e^{logsin^{-1} x}\)dx = \(\int\)sin-1x dx (\(\because\)elogf(x) = f(x))
= sin-1x\(\int1dx\) - \(\int(\frac{d}{dx}sin^{-1}x(\int 1dx))dx\)
= x sin-1x - \(\int\frac{x}{\sqrt{1-x^2}}dx\)
= x sin-1x + \(\frac12\)\(\int\frac{-2x}{\sqrt{1-x^2}}dx\)
Let 1 - x2 = t2
⇒ -2x dt = 2tdt
= x sin-1x + \(\frac12\int\frac{2tdt}t
\)
= x sin-1x + t + c, where c is integral constant
= x sin-1x + \(\sqrt{1-x^2}+C\) (\(\because\) t = \(\sqrt{1-t^2}\))