आधुनिक समय में मानव-जीवन की सभी समस्याओं के अध्ययन तथा समाधान में सांख्यिकी की उपयोगिता है और जीवन के प्रत्येक मोड़ पर यह पथ-प्रदर्शक की तरह कार्य करती है। यही कारण है कि विद्वान् सांख्यिकी को ‘मानव-कल्याण का अंकगणित’ कहते हैं। वर्तमान में मानवजीवन का शायद ही कोई ऐसा क्षेत्र हो जिसमें सांख्यिकी का उपयोग एवं महत्त्व न हो। सांख्यिकी के बढ़ते हुए महत्त्व एवं उपयोगिता के कारण टिप्पट (Tippet) ने कहा है, “सांख्यिकी प्रत्येक व्यक्ति को ‘प्रभावित करती है तथा जीवन को अनेक बिन्दुओं पर स्पर्श करती है।”
सामाजिक विज्ञानों की भाँति, मनोविज्ञान में भी सांख्यिकी का उपयोग दिन-प्रतिदिन विस्तार ले। रहा है। मनोविज्ञान की समस्याओं को समझने तथा उनके समाधान के लिए और मनोविज्ञान से सम्बन्धित शोध-कार्यों में सांख्यिकी का उपयोग अपरिहार्य हो गया है। मनोविज्ञान में सांख्यिकी की उपयोगिता की निम्नलिखित प्रकार विवेचना कर सकते हैं
मनोविज्ञान में सांख्यिकी की उपयोगिता (Utility of Statistics in Psychology)
मनोविज्ञान में सांख्यिकी की उपयोगिता निर्विवाद, सार्वभौमिक तथा सार्वकालिक है। प्रायः सभी मनोवैज्ञानिक अध्ययनों, प्रयोग एवं शोध कार्यों में सांख्यिकी की भारी माँग है। सच तो यह है कि सांख्यिकीय विधियों के अभाव में ये कार्य हो ही नहीं सकते। मनोविज्ञान के क्षेत्र में सांख्यिकी की उपयोगिता के निम्नलिखित कारण हैं –
(1) आँकड़ों को सरल एवं बोधगम्य बनाना – मनोवैज्ञानिक प्रयोग अक्सर एक विशाल समूह पर लागू किये जाते हैं जिनसे प्रदत्त या समंक आँकड़े प्राप्त होते हैं। इन आँकड़ों को सार्थक बनाने के लिए आवश्यक है कि इन्हें सुव्यवस्थित किया जाए आँकड़ों को सुव्यवस्थित बनाने में सांख्यिकी विधियाँ उपयोगी हैं। उदाहरण के लिए–आँकड़ों का आवृत्ति वितरण बनाकर उन्हें विभिन्न रेखाचित्रों द्वारा प्रदर्शित करने में सांख्यिकी का बहुत महत्त्व है। केन्द्रीय प्रवृत्ति के मापन की विधियों द्वारा आँकड़ों का वर्णन करने में भी सांख्यिकी उपयोगी है। इस भॉति, सांख्यिकी अव्यवस्थित एवं अर्थहीन आँकड़ों को सरल तथा बोधगम्य बनाती है।
(2) ऑकड़ों की सुस्पष्ट एवं संक्षिप्त प्रस्तुतीकरण – सांख्यिकी की मदद से मनोवैज्ञानिक अध्ययनों से सम्बद्ध आंकड़ों का सरल, सुस्पष्ट एवं संक्षिप्त प्रस्तुतीकरण किया जाता है। वृत्तचित्र, स्तम्भ रेखाचित्र, आवृत्ति बहुभुज, स्तम्भाकृति, संचित प्रतिशत वक्र तथा संचित आवृत्ति वक्र आदि विधियों के द्वारा आँकड़ों की मुख्य विशेषताओं को स्पष्टता मिलती है। एक मनोवैज्ञानिक बालकों के एक बड़े समूह पर बुद्धि परीक्षण का प्रयोग करके मध्यमान तथा प्रामाणिक विचलन की गणना द्वारा सभी इकाइयों में सामूहिक रूप से मिलने वाले लक्षणों को खोज निकालता है। वह बालकों की औसत बुद्धि ज्ञात कर सकता है और यह पता भी लगा सकता है कि समूह सजातीय है अथवा विषमजातीय। पढ़ने वाले बालकों की योग्यताओं में विषमता अधिक होने पर कक्षा को कई हिस्सों में विभाजित कर बालकों की योग्यताओं के अनुसार पढ़ाया जा सकता है। इसी प्रकार आँकड़ों के वर्णन में सामान्य सम्भावना वक्र के प्रारम्भिक सिद्धान्तों का उपयोग भी किया जाता है।
(3) आँकड़ों को मात्रात्मक स्वरूप प्रदान करना – अन्य सामाजिक विज्ञानों की तरह से मनोविज्ञान में शोध कार्य के अन्तर्गत प्राप्त आँकड़े प्रायः गुणात्मक प्रकृति के होते हैं जिन्हें मात्रात्मक स्वरूप प्रदान करना होता है। यह कार्य सांख्यिकीय विधियों की सहायता से ही सम्भव है। बुद्धि, समायोजन, अन्तर्मुखता, बहिर्मुखता आदि से सम्बन्धित गुणात्मक आँकड़ों को मात्रात्मक रूप में परिवर्तित करने के लिए सांख्यिकी अत्यन्त उपयोगी है।
(4) घटना की यथार्थ व्याख्या – सांख्यिकीय विधियाँ किसी घटना की यथार्थ व्याख्या (Exact descriptions) करने में सक्षम हैं। इस व्याख्या को कोई भी प्रशिक्षित व्यक्ति बिना किसी सन्देह के ठीक-ठीक समझ सकता है। यदि कहा जाए कि कक्षा 12 के छात्र श्याम ने मनोविज्ञान में बहुत अच्छे अंक प्राप्त किये हैं तो इससे श्याम की मनोविज्ञान में योग्यता का सुनिश्चित ज्ञान नहीं होता; किन्तु यदि यह कहा जाए कि श्याम के मनोविज्ञान में प्राप्तांकों का प्रतिशत 95 है तो इससे स्पष्टतया ज्ञात होता है। कि 95% छात्रों के मनोविज्ञान में प्राप्तांक, श्याम के प्राप्तांकों से कम हैं। इस भाँति सांख्यिकी की सहायता से घटना की सही-सही व्याख्या की जा सकती है।
(5) आँकड़ों के सहसम्बन्ध का वर्णन – मनोविज्ञान से जुड़े अध्ययन एवं अनुसन्धान कार्यों में सांख्यिकीय विधियों की सहायता से दो या दो से अधिक चरों (variables) में सहसम्बन्ध ज्ञात किया जा सकता है। यदि कोई मनोवैज्ञानिक किसी कक्षा के बालकों की आयु और उनकी स्मरण-शविन के मध्य सम्बन्ध ज्ञात करना चाहे तो वह सहसम्बन्ध गुणांक को प्रयोग करता है। सहसम्बन्ध की विधियाँ आंशिक तथा बहुगुणी सहसम्बन्ध की गणना भी कर सकती हैं।
(6) तुलनात्मक अध्ययन – बॉडिंगटन का कथन है, “सांख्यिकी का निचोड़ गणना करना ही नहीं है अपितु तुलना करना भी है।’ मनोवैज्ञानिक दो या दो से अधिक समूहों की तुलना के लिए सांख्यिकीय विधियों का प्रयोग कर सकते हैं। उदाहरण के लिए यदि यह ज्ञात करना हो कि कक्षा 11 के छात्रों को मनोविज्ञान पढ़ाने के लिए शिक्षण की पुस्तक-पाठन तथा व्याख्यान विधि में से कौन-सी विधि अच्छी है तो इसके लिए प्रयोग किया जा सकता है। समान योग्यता वाले छात्रों के दो समूह बनाकर एक समूह को पुस्तक-पाठन विधि द्वारा तथा दूसरे समूह को व्याख्यान विधि द्वारा पढ़ाया जाएगा। फिर दोनों समूहों की प्रामाणिक परीक्षा लेकर उनके प्राप्तांकों पर सांख्यिकीय विधियाँ लागू कर तुलनात्मक अध्ययन द्वारा यह बताना सम्भव है कि मनोविज्ञान शिक्षण की प्रभावशाली विधि कौन-सी
(7) कार्यकारण सम्बन्ध – सांख्यिकीय विधियों की सहायता से कोई भी मनोवैज्ञानिक किसी घटना को उत्पन्न करने वाले कारणों को ज्ञात कर सकता है। इसके लिए स्वतन्त्र चर का परतन्त्र चर पर पड़ने वाले प्रभाव का अध्ययन करना होगा। यदि यह ज्ञात करना हो कि अमुक छात्र किसी विषय में क्यों फेल हो जाता है तो तत्सम्बन्धी कारणों को प्रयोगात्मक विधि (Experimental Method) द्वारा ज्ञात किया जा सकता है। उदाहरणार्थ- प्रयोग में सभी कारणों को स्थिर (Constant) करने के उपरान्त यह पाया जाए कि नियमित अध्ययन न करने वाले छात्र फेल हो जाते हैं तो सम्भवतया छात्र के उस विषय में फेल होने का कारण, नियमित अध्ययन का अभाव ही हो।
(8) मापन तथा मनोवैज्ञानिक परीक्षणों में सांख्यिकी का उपयोग – सांख्यिकीय विधियों के अभाव में मनोवैज्ञानिक परीक्षणों का निर्माण, उनकी व्याख्या तथा विश्वसनीयता व वैधता की जाँच नहीं की जा सकती। बुद्धि-परीक्षण, निष्पत्ति परीक्षण, अभिवृत्ति परीक्षण तथा प्रवणता परीक्षण आदि के निर्माण में सांख्यिकीय विधियाँ अत्यधिक उपयोगी हैं। इसी प्रकार मनोवैज्ञानिक मापन में भी सांख्यिकी बहुत उपयोगी है।
(9) भविष्यकथन में सांख्यिकी का उपयोग – जब कोई मनोवैज्ञानिक मानव-व्यवहार से सम्बन्धित किसी घटना के सम्बन्ध में पूर्वानुमान लगाना चाहता है या भविष्यकथन करना चाहता है तो वह सांख्यिकी की प्रतीपगमन तथा भविष्यकथन से सम्बन्धित विधियों का उपयोग करता है। उदाहरण के लिए यदि कक्षा बारह के किसी छात्र की बुद्धि-लब्धि (I.Q.), हाईस्कूल में उसके प्राप्तांक तथा अध्ययन के घण्टों के आधार पर उसकी बोर्ड की परीक्षा में सफलता का पूर्वानुमान/भविष्यकथन करना हो तो प्रतीपगमन रेखाओं की मदद से ऐसा किया जा सकता है। मनोवैज्ञानिक सांख्यिकीय विधियों की सहायता से यह भी ज्ञात किया जा सकता है कि उसका भविष्यकथन कितना त्रुटिपूर्ण है।
(10) शैक्षिक समस्याओं का निदान – सांख्यिकीय विधियाँ शैक्षिक समस्याओं के निराकरण में भी विशिष्ट भूमिका निभाती हैं। छात्रों के चयन (Selection), उनकी पदोन्नति (Promotion) तथा शैक्षिक उपलब्धियों (Educational Achievements) के विषय में भविष्यकथन करने में भी सांख्यिकीय विधियाँ उपयोगी हैं। छात्रों के लिए परीक्षण तैयार करने व उनके मूल्यांकन में सांख्यिकी की महत्त्वपूर्ण भूमिका है। इसी प्रकार छात्रों के मार्गदर्शन में सांख्यिकीय विधियाँ अत्यन्त उपयोगी सिद्ध उपर्युक्त विवेचन के आधार पर निष्कर्ष निकलता है कि मनोविज्ञान में सांख्यिकी की महती उपयोगिता है। मनोवैज्ञानिक समस्याओं से सम्बन्धित आकंड़ों के संकलन, वर्गीकरण व्याख्या तथा तुलना में ही नहीं बल्कि उनसे सम्बद्ध पूर्वानुमान व भविष्यकथन में भी सांख्यिकी का बहुत उपयोग है।