Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
192 views
in Continuity and Differentiability by (15 points)
edited by

\(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+1}{x}\right) \)

by (15 points)
Differentiate wrt x

Please log in or register to answer this question.

1 Answer

+1 vote
by (42.2k points)

\(y = tan^{-1}\left(\frac{\sqrt{1+x^2}+1}{x}\right) \)

Let \(x = tan \theta \)

⇒ \(\theta = tan^{-1}x\)

\(\therefore y= tan^{-1}\left(\frac{\sqrt{1+tan^2\theta}+1}{tan\theta}\right)\)

\(= tan^{-1}\left(\frac{sec\theta + 1}{tan\theta}\right)\)

\(= tan^{-1}\left(\frac{1+cos\theta}{sin\theta}\right)\)

\(= tan^{-1} \left(\frac{2cos^2\frac{\theta}{2}}{2sin\frac{\theta}2cos\frac{\theta}{2}}\right)\)

\(= tan^{-1}\left(cot\frac{\theta}{2}\right)\)

\(= tan^{-1}\left(tan\frac{\pi}{2}- \frac{\theta}{2}\right)\)

⇒ \(y = \frac{\pi}{2}- \frac{\theta}{2}\)

\(\therefore \frac{dy}{dx} = \frac{-1}{2} \frac{d\theta}{dx}\)

\(= \frac{-1}{2} \frac{d}{dx} tan^{-1}x\)          \((\because \theta = tan^{-1}x)\)

\(= \frac{-1}{2}\frac{1 }{1+x^2}\)

\(\therefore \frac{d}{dx} tan^{-1} (\frac{\sqrt{1 +x^2} + 1}{x})= \frac{-1}{2(1 + x^2)}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...