(i) अन्तर = (x3 + x + 1) – (1 – x – x2)
= x3 + x + 1 – 1 + x + x2
= x3 + x2 + 2x
= x(x2 + x + 2)
(ii) अन्तर = 6x3 + 5x2 + 4x – 3 – (4x3 – 2x2 + 7x – 1)
= 6x3 + 5x2 + 4x – 3 – 4x3 + 2x2 – 7x + 1
= 2x3 + 7x2 – 3x – 2
(iii) अन्तर = (x3 + x2 + x + 1) – (x3 – x2 + x – 1)
= x3 + x2 + x + 1 – x3 + x2 – x + 1
= 2x2 +2
(iv) अन्तर = (x4 – 3x3 + 2x + 6) – (x4 – 3x3 – 6x + 2)
= x4 – 3x3 + 2x + 6 – x4 + 3x3 + 6x – 2
= 8x + 4
(v) अन्तर = (3x7 – 2x2 + 3) – (x6 – 3x4 + x2 + x)
= 3x7 – 2x2 + 3 – x + 3x4 – x2 – x
= 3x7 – x6 + 3x4 – 3x2 – x + 3