Correct option is (2) 5
sinθ tanθ + tanθ = sin2θ
tanθ (sinθ + 1) - 2 sinθ cosθ = 0
\(sin \theta \left(\frac{(sin\theta + 1)}{cos\theta} - 2 cos\theta\right) = 0\)
sinθ = 0
θ = 0
or
sinθ + 1 - 2 cos2θ = 0
sinθ + 1 - 2 (1 - sin2θ) = 0
2sin2θ + sinθ - 1 = 0
sinθ = -1, \(\frac12\)
\(\theta = -\frac\pi2,\frac\pi6,\frac{5\pi}6\)
Hence,
\(S = \{0, \frac\pi6,\frac{5\pi}6\}\)
⇒ n(5) = 3
\(t = \sum (\theta(2\theta)) = cos(0) + cos(\frac\pi3) + cos(\frac{5\pi}3)\)
\(= 1 +\frac12 + \frac12 = 2\)
t + n(5) = 2 + 3 = 5