Correct option is (A) 10
We know that
\(U = \frac{q^2}{2C}\)
\(\frac{U_1}{U_2} = \left(\frac{q_2}{q_1}\right)^2\)
\(\frac{U_2}{U_1} - 1 = \left(\frac{q_2}{q_1}\right)^2 - 1\)
\(\frac{U_2 - U_1}{U_1} = \frac{q_2^2}{q_1^2} - 1\)
\(\frac{U_2 - U_1}{U_1} \times 100\) \(= \left(\frac{q_2^2}{q_1^2} - 1\right) \times 100\)
\(44 = \left(\frac{q_2^2}{q_1^2} - 1\right) \times 100\)
\(\frac{q_2^2}{q_1^2} = 0.44 + 1\)
\(q_2 = 1.2 q_1\)
then,
\(q_2 - q_1 = 2c \)
\(0.2 q_1 = 2\)
\(q_1 = \frac{2}{0.2}\)
\(q_1 = 10 c\)