Let f, g : R →R be two real valued functions defined as
\(f(x)=\begin{cases}-|x+3|&,x<0\\e^x&,x\ge 0\end {cases}\) and g(x) = \(\begin{cases}x^2+k_1x&,x <0\\4x + k_2&,x \ge 0\end{cases},\)where k1 and k2 are real constant. If (gof) is differentiable at x = 0, then (gof) (-4) + (gof) (4) is equal to:
(A) 4(e4 + 1)
(B) 2(2e4 + 1)
(C) 4e4
(D) 2(2e4 - 1)