Let O be the origin, and \(\vec{OX},\vec{OY},\vec{OZ}\) be three unit vectors in the directions of the sides \(\vec{OR},\vec{RP},\vec{PQ}\) respectively, of a triangle PQR.
1. \(|\vec{OX}\times \vec{OY}|\)
(A) sin (P+Q)
(B) sin 2R
(C) sin(P + R)
(D) sin(Q + R)
2. If the triangle PQR varies, then the minimum value of
cos(P + Q)+cos(Q + R) +cos(R+P)
(A) -5/3
(B) -3/2
(C) 3/2
(D) 5/3