The correct option is (3) -256
x2 + 2x + 2 = 0 and its roots are α, β.
x2 + 2x + 1 + 1 = 0
⇒ (x+1)2 + 1 = 0 [Since, a2 + 2ab + b2 = (a + b)2]
⇒ (x+1)2 = −1
⇒ x + 1 = √−1
⇒ x1 = −1+ i ; x2 = −1 −i [Since, √−1= i]
Assuming α = −1 + i and β = −1 − i
Squaring on both sides, we get
⇒ α2 = (−1+i)2 and β2 = (−1−i)2
⇒ α2 = 1 + i2 − 2i and β2 = 1 + i2 + 2i
⇒ α2 = 1 − 1 − 2i and β2 = 1 − 1 + 2i [Since, i2 = −1]
∴ α2 = −2i and β2 = 2i
Now consider, α15 + β15 = (α14 × α)+(β14 × β)
= [(α2)7 × α] + [(β2)7 × β)]
= (−2i)7 × (−1 + i) + (2i)7 × (−1 −i)
= −27i7(−1 + i) − 27i7(1 + i)
=−27i7(−1 + i + 1 + i)
= −128i7(2i)
= (−128 × 2) × i8
= −256(i2)4
= −256(−1)4
∴ α15 + β15 = −256