Correct option is (3) 10
Given matrix
\(P = \begin{bmatrix}1&0&0\\3&1&0\\9&3&1\end{bmatrix}\)
\(= \begin{bmatrix}1&0&0\\3&1&0\\9&3&1\end{bmatrix} + \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\)
⇒ P = X + I(let)
Now, P5 = (I + X)5
= I + 5C1(X) + 5C2(X2) + 5C3(X3) + ...
[∵ In = I, I⋅A and (a + x)n = nC0αn + nC1αn−1x + ... + nCnxn]
Here,
\(X^2= \begin{bmatrix}0&0&0\\3&0&0\\9&3&0\end{bmatrix} \begin{bmatrix}0&0&0\\3&0&0\\9&3&0\end{bmatrix} = \begin{bmatrix}0&0&0\\0&0&0\\9&0&0\end{bmatrix} \)
and
\(X^3 = X^2\),
\(X= \begin{bmatrix}0&0&0\\0&0&0\\9&0&0\end{bmatrix} \begin{bmatrix}0&0&0\\3&0&0\\9&3&0\end{bmatrix} = \begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix} \)
⇒ \( X^4 = X^5 = \begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix} \)
So, \(P^5 = I + 5 \begin{bmatrix}0&0&0\\3&0&0\\9&3&0\end{bmatrix} + 10\begin{bmatrix}0&0&0\\0&0&0\\9&0&0\end{bmatrix} \)
\(= \begin{bmatrix}1&0&0\\15&1&0\\135&15&1\end{bmatrix} \)
and
\(Q = I + P^5\)
\(= \begin{bmatrix}2&0&0\\15&2&0\\135&15&2\end{bmatrix} \)
\(= [q_{ij}]\)
⇒ q21 = 15, q31 = 135 and q32 = 15
Hence,
\(\frac{q_{21} + q_{31}}{q_{32}} = \frac{15 + 135}{15}\)
\(= \frac{150}{15}\)
\(= 10\)