The correct option (a) 0
Explanation:
I = (π/2)∫0 log[(a + bsinx)/(a + b cos x)]dx .....(1)
= (π/2)∫0 log[{a + b sin[(π/2) – x]}/{a + b cos[(π/2) – x]}]dx
∴ I = (π/2)∫0 log[(a + bcosx)/(a + b sin x)]dx ....(2)
(1) + (2) given,
2I = (π/2)∫0 log[(a + bsinx)/(a + bcosx)] + log[(a + bcosx)/(a + bsinx)] ∙dx
2I = (π/2)∫0 log(1)dx
∴ 2I = 0
I = 0.