I. LB = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
⇒ LB = \(\sqrt{(0 -5)^2+(7 - 10)^2}\)
LB = \(\sqrt{(5)^2 + (3)^2}\)
⇒ LB = \(\sqrt{25 + 9}\)
LB = \(\sqrt{34}\)
Hence the distance is 150√34 km.
II. Coordinate of Kota (K) is
\(\left(\frac{3\times 5 + 2 \times 0}{3 + 2}, \frac{3\times 7 + 2\times 10}{3 + 2}\right)\)
\(= \left(\frac{15 + 0}{5}, \frac{21 + 20}{5}\right)\)
\(= (3, \frac{41}5)\)
III. L(5, 10), N(2, 6), P(8, 6)
LN = \(\sqrt{(2 - 5)^2 + (6 - 10)^2}\)
\(= \sqrt{(3)^2 + (4)^2}\)
\(= \sqrt{9 + 16}\)
\(= \sqrt{25}\)
\(= 5\)
NP = \(\sqrt{(8 - 2)^2 + (6 - 6)^2}\)
\(= \sqrt{(4)^2 + (0)^2}\)
\(= 4\)
PL = \(\sqrt{(8 - 5)^2 + (6 - 10)^2}\)
\(= \sqrt{(3)^2 + (4)^2}\)
⇒ LB = \(\sqrt{9 + 16}\)
\(= \sqrt{25}\)
= 5
As LN = PL ≠ NP, So ∆LNP is an isosceles triangle.
OR
Let A(0, b) be a point on the y-axis then AL = AP
⇒ \(\sqrt{(5 - 0)^2 + (10 - b)^2} = \sqrt{(8 - 0)^2 + (6 - b)^2}\)
⇒ (5)2 + (10 − b)2 = (8)2 + (6 − b)2
⇒ 25 + 100 − 20b + b2 = 64 + 36 − 12b + b2
⇒ 8b = 25
⇒ b = \(\frac{25}8\)
So, the coordinate on y axis is \((0, \frac{25}8)\).