The correct option (b) – (1/2)log|cot2x + √(cot4x + 1)|
Explanation:
[(cotx)/√(cos4x + sin4x)] = [(cotx ∙ cosec2x)/√(1 + cot4x)]
Let cot2x = t
∴ 2cotx(– cosec2x)dx = dt
∴ I = ∫[{–(dt)}/√(1 + t2)]
= – (1/2)∫[dt/{√(1 + t2)}]
= – (1/2)log|t + √(1 + t2)| + c
= – (1/2)log|cot2x + √(1 + cot4x)| + c