The correct option (d) xe[x+(1/x)]
Explanation:
I = ∫[1 + x – (1/x)]e[x+(1/x)]dx
= ∫e[x+(1/x)]dx + ∫x[1 – (1/x2)]e[x+(1/x)] ∙dx
= I1 + I2
For I2, Let u = x, V = e[x+(1/x)][1 – (1/x2)]
∴ I2 = x∫e[x+(1/x)][1 – (1/x2)] – ∫∫e[x+(1/x)][1 – (1/x2)]dx
Let [x + (1/x)] = t hence [1 – (1/x2)]dx = dt
∴ ∫e[x+(1/x)] [1 – (1/x2)]dx
= ∫et ∙ dt = et = e[x+(1/x)]
∴ I2 = x ∙ e[x+(1/x)] − ∫e[x+(1/x)] dx + c
∴ I = I1 + I2
= ∫e[x+(1/x)]dx + x ∙ e[x+(1/x)] – ∫e[x+(1/x)] dx + c
= x ∙ e[x+(1/x)] + c