sin-1(1 – x) – 2 sin-1 x = π/2
⇒ sin-1(1 – x) – 2 sin-1x
= sin-1(1 – x) + cos -1(1 – x)
⇒ – 2 sin-1 x
= cos-1(1 – x)
[∴ sin-1 (1 – x) + cos-1 (1 – x) ⇒ π/2]
Let sin-1x = θ
then sin θ = x
Let sin-1x = θ
⇒ sin θ = x
∴ – 2θ = cos-1(1 – x)
⇒ cos(- 2θ) = 1 – x
⇒ cos 2θ = 1 – x …………(i)
Since, we know that
cos 2θ ⇒ 1 – 2 sin2 θ
⇒ cos 2θ ⇒ 1 – 2x2 …………. (ii)
From equations (i) and (ii), we have
1 – x = 1 – 2x2
⇒ 2x2 – x = θ ⇒ x (2x – 1) = 0
⇒ x = 0, x = 1/2.
But x = 1/2 does not satisfies given equation.
∴ x = 0