The given sequence of AP is 45, 39, 33, …………..
Let AP has n terms
Here, a – 45, d = 39 – 45 = – 6 and Sn = 180 (given)
Sn = 180
⇒ \(\frac{n}{2}\) [2a + (n – 1)d] = 180
⇒ \(\frac{n}{2}\)[2 × 45 + (n – 1) × (-6)] = 180
⇒ \(\frac{n}{2}\) [90 – 6n + 6] = 180
⇒ \(\frac{n}{2}\)[96 – 6n] = 180
⇒ 96n – 6n2 = 360
⇒ 6n2 – 96n + 360 = 0
⇒ n2 – 16n + 60 = 0
⇒ n2 – (10 + 6)n + 60 = 0
⇒ n – 10n – 6n + 60 =0
⇒ n(n – 10) – 6(n – 10) = 0
⇒ (n – 10) (n – 6) =0
⇒ n = 10 or n = 6
Hence, 10 or 6 terms must be taken.