The correct option (C) (1/4)C (V1 – V2)2
Explanation:
initial energy = Ui = U1 + U2
Ui = (1/2)CV12 + (1/2)CV22 (1)
when they are connected, the potential across each is
V = (1/2) (V1 + V2)
Final energy = (1/2)CV2 + (1/2)CV2 = CV2
Uf = C[(V1 + V2)/2]2 (2)
∴ Decrease in energy = Ui – Uf
= (1/2)(CV12 + CV22) – C[(V1 + V2) / 2]2 from (1) & (2)
∴ Decrease in energy = (1/2) C(V12 + V22) – (1/4) C(V12 + 2V1V2 + V22)
= (1/4) C(V1 – V2)2